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Let the effective azimuthal termination of the magnetic 

field within a magnet be described by a curve 

S = s 0 + f (xl (1) 

where s is the usual variable measuring distance along the 

central orbit and x is the transverse distance orthogonal to 

S. 

The meaning of an effective termination is that 

B(x,s) = B(x){l-S(s-so-f(x))}, (2) 

where S is a step function. Thus 

B’ (x,s) = B'(Xj{i-S) + B(x)f'(X)G. (3) 

This gives on integrating from s = sl, a position well within 

the magnet 
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B'ds = B'(x) (s-sl) + B(x)f'(x). 

s1 

(4) 

Also 

(5) 
co 

I 
Bds = B(x) (s-sl). 

% 
Eliminating s-s1 between Eqs. (4) and (5) gives 

cv 

i 
BdS 

s1 

I 

. (6) 
B(x) 

But from Eq. (5) 

i 

M, 

Bds 
S-l 

ALB F s-so = A - (s 
B lx) o-sl) 

and from Eq. (1) 

ALB = f(x) 

Thus, if 

co 

I 
B'ds 

ALG q s1 - (s 
B’ (x) 

o-sl) 

it follows that 

(7) 

(8) 

(9) 

B' (x) 
AL'B = B(x) l (ALG - ALB) (10) 
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PROBLEM 

Given that 

ALB 7 AS + 1 D(I)x', 
I 

find ALG. 

(11) 

It is convenient to represent B'(x) and B(x) in terms of 

dimensionless variables 

g(x) = B’ (x) 
B’ (0) 

B lx> b(x) = B(O) . 

To restore dimensions one introduces 
k = B’(O) 

B(O) ’ 

(12) 

(13) 

the profile parameter. Thus Eq. (10) becomes 

ALG - AS - 1 D(I)X' = 2 l #- 1 ID(I)X'-? (14) 
I I 

If one puts 

T(J,I) = $ l 

b (x,) 
. 

dxJ) 

x 

J 
I-l + x I Jf 

and 

GEND(J) = AL(xJ) - AS, 

then 

1 T(J,I)D(I) = GEND(J), 

where x is evaluated at the points x J' 

(15) 

(16) 

(17) 
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Let 

and 

LEAST SQUARES ANALYSIS 

SUM(K) = 1 W(J)GEND(J)T(J,K), 
J 

(18) 

c (K,L) = 1 W(J)T(J,K)T(J,L), 
J 

(19) 

(20) 

then 

1 C(K,L)D(K) = SUM(L). 
K 

Matrix inversion yields D(K). 

The above considerations have been coded in the program 

GFITT. 


